Shortcuts

Source code for torch.export.exported_program

import copy
import dataclasses
from enum import auto, Enum
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union

import sympy

import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch.fx._compatibility import compatibility

from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager


__all__ = [
    "ArgumentKind",
    "ArgumentSpec",
    "ExportBackwardSignature",
    "ExportedProgram",
    "ExportGraphSignature",
    "ModuleCallEntry",
    "ModuleCallSignature",
]


PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]


[docs]@dataclasses.dataclass class ExportBackwardSignature: gradients_to_parameters: Dict[str, str] gradients_to_user_inputs: Dict[str, str] loss_output: str
[docs]@dataclasses.dataclass class ExportGraphSignature: """ :class:`ExportGraphSignature` models the input/output signature of Export Graph, which is a fx.Graph with stronger invariants gurantees. Export Graph is functional and does not access "states" like parameters or buffers within the graph via ``getattr`` nodes. Instead, :func:`export` gurantees that parameters and buffers are lifted out of the graph as inputs. Similarly, any mutations to buffers are not included in the graph either, instead the updated values of mutated buffers are modeled as additional outputs of Export Graph. The ordering of all inputs and outputs are:: Inputs = [*parameters_buffers, *flattened_user_inputs] Outputs = [*mutated_inputs, *flattened_user_outputs] e.g. If following module is exported:: class CustomModule(nn.Module): def __init__(self): super(CustomModule, self).__init__() # Define a parameter self.my_parameter = nn.Parameter(torch.tensor(2.0)) # Define two buffers self.register_buffer('my_buffer1', torch.tensor(3.0)) self.register_buffer('my_buffer2', torch.tensor(4.0)) def forward(self, x1, x2): # Use the parameter, buffers, and both inputs in the forward method output = (x1 + self.my_parameter) * self.my_buffer1 + x2 * self.my_buffer2 # Mutate one of the buffers (e.g., increment it by 1) self.my_buffer2.add_(1.0) # In-place addition return output Resulting Graph would be:: graph(): %arg0_1 := placeholder[target=arg0_1] %arg1_1 := placeholder[target=arg1_1] %arg2_1 := placeholder[target=arg2_1] %arg3_1 := placeholder[target=arg3_1] %arg4_1 := placeholder[target=arg4_1] %add_tensor := call_function[target=torch.ops.aten.add.Tensor](args = (%arg3_1, %arg0_1), kwargs = {}) %mul_tensor := call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, %arg1_1), kwargs = {}) %mul_tensor_1 := call_function[target=torch.ops.aten.mul.Tensor](args = (%arg4_1, %arg2_1), kwargs = {}) %add_tensor_1 := call_function[target=torch.ops.aten.add.Tensor](args = (%mul_tensor, %mul_tensor_1), kwargs = {}) %add_tensor_2 := call_function[target=torch.ops.aten.add.Tensor](args = (%arg2_1, 1.0), kwargs = {}) return (add_tensor_2, add_tensor_1) Resulting ExportGraphSignature would be:: ExportGraphSignature( # Indicates that there is one parameter named `my_parameter` parameters=['L__self___my_parameter'], # Indicates that there are two buffers, `my_buffer1` and `my_buffer2` buffers=['L__self___my_buffer1', 'L__self___my_buffer2'], # Indicates that the nodes `arg3_1` and `arg4_1` in produced graph map to # original user inputs, ie. x1 and x2 user_inputs=['arg3_1', 'arg4_1'], # Indicates that the node `add_tensor_1` maps to output of original program user_outputs=['add_tensor_1'], # Indicates that there is one parameter (self.my_parameter) captured, # its name is now mangled to be `L__self___my_parameter`, which is now # represented by node `arg0_1` in the graph. inputs_to_parameters={'arg0_1': 'L__self___my_parameter'}, # Indicates that there are two buffers (self.my_buffer1, self.my_buffer2) captured, # their name are now mangled to be `L__self___my_my_buffer1` and `L__self___my_buffer2`. # They are now represented by nodes `arg1_1` and `arg2_1` in the graph. inputs_to_buffers={'arg1_1': 'L__self___my_buffer1', 'arg2_1': 'L__self___my_buffer2'}, # Indicates that one buffer named `L__self___my_buffer2` is mutated during execution, # its new value is output from the graph represented by the node named `add_tensor_2` buffers_to_mutate={'add_tensor_2': 'L__self___my_buffer2'}, # Backward graph not captured backward_signature=None, # Work in progress feature, please ignore now. assertion_dep_token=None ) """ # A list of parameters uniquely identified by mangled fully qualified name parameters: List[str] # A list of buffers uniquely identified by mangled fully qualified name buffers: List[str] # Graph node names of pytree-flattened inputs of original program user_inputs: List[str] # Graph node names of pytree-flattened outputs of original program user_outputs: List[str] # A dictionary mapping graph input node names to parameters. If a graph input # name is found in this dictionary, it is guranteed to be a lifted parameter. inputs_to_parameters: Dict[str, str] # A dictionary mapping graph input node names to buffers. If a graph input # name is found in this dictionary, it is guranteed to be a lifted buffer. inputs_to_buffers: Dict[str, str] # A dictionary mapping graph output node names to buffers that are mutated in the # original program. Buffers that are not mutated will not be found in this dictionary. buffers_to_mutate: Dict[str, str] backward_signature: Optional[ExportBackwardSignature] # Map from assertion dependency token index to assertion dep token output # name in output. The shape of output after aot_autograd will be like: # (updated_inputs, user_outputs, dep_token). assertion_dep_token: Optional[Dict[int, str]] = None def __post_init__(self) -> None: assertion_dep_token = self.assertion_dep_token if assertion_dep_token is None: return assert len(assertion_dep_token) == 1 assertion_dep_token_index = list(assertion_dep_token.keys())[0] assert ( len(self.user_outputs) + len(self.buffers_to_mutate) == assertion_dep_token_index )
[docs]class ArgumentKind(Enum): Tensor = auto() SymInt = auto() Constant = auto()
[docs]@dataclasses.dataclass class ArgumentSpec: kind: ArgumentKind value: Any def __post_init__(self): if self.kind in (ArgumentKind.Tensor, ArgumentKind.SymInt): assert isinstance(self.value, str)
[docs]@dataclasses.dataclass class ModuleCallSignature: inputs: List[ArgumentSpec] outputs: List[ArgumentSpec] in_spec: pytree.TreeSpec out_spec: pytree.TreeSpec
[docs]@dataclasses.dataclass class ModuleCallEntry: fqn: str signature: Optional[ModuleCallSignature] = None
[docs]class ExportedProgram: """ Package of a program from :func:`export`. It contains an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing tensor values of all lifted parameters and buffers, and various metadata. You can call an ExportedProgram like the original callable traced by :func:`export` with the same calling convention. To perform transformations on the graph, use ``.module`` property to access an :class:`torch.fx.GraphModule`. You can then use `FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_ to rewrite the graph. Afterwards, you can simply use :func:`export` again to construct a correct ExportedProgram. """ def __init__( self, root: Union[torch.nn.Module, Dict[str, Any]], graph: torch.fx.Graph, graph_signature: ExportGraphSignature, call_spec: Any, state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]], range_constraints: Dict[sympy.Symbol, Any], equality_constraints: List[Tuple[Any, Any]], module_call_graph: List[ModuleCallEntry], example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None, dialect: Optional[str] = None, ): from torch._export.exported_program import ( _create_graph_module_for_export, CallSpec, ) from torch._export.passes.add_runtime_assertions_for_constraints_pass import ( InputDim, RangeConstraint, ) # Remove codegen related things from the graph. It should just be a flat graph. graph._codegen = torch.fx.graph.CodeGen() self._graph_module = _create_graph_module_for_export(root, graph) if isinstance(root, torch.fx.GraphModule): self._graph_module.meta.update(root.meta) self._graph_signature: ExportGraphSignature = graph_signature self._call_spec: CallSpec = call_spec self._state_dict: Dict[str, Any] = state_dict self._range_constraints: Dict[sympy.Symbol, RangeConstraint] = range_constraints self._equality_constraints: List[ Tuple[InputDim, InputDim] ] = equality_constraints self._module_call_graph: List[ModuleCallEntry] = module_call_graph self._example_inputs = example_inputs self._dialect = dialect or "ATEN" @property @compatibility(is_backward_compatible=False) def graph_module(self): return self._graph_module @property @compatibility(is_backward_compatible=False) def graph(self): return self.graph_module.graph @property @compatibility(is_backward_compatible=False) def graph_signature(self): return self._graph_signature @property @compatibility(is_backward_compatible=False) def state_dict(self): return self._state_dict
[docs] @compatibility(is_backward_compatible=False) def parameters(self) -> Iterator[torch.nn.Parameter]: """ Returns an iterator over original module's parameters. """ for _, param in self.named_parameters(): yield param
[docs] @compatibility(is_backward_compatible=False) def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]: """ Returns an iterator over original module parameters, yielding both the name of the parameter as well as the parameter itself. """ for param_name in self.graph_signature.parameters: yield param_name, self.state_dict[param_name]
[docs] @compatibility(is_backward_compatible=False) def buffers(self) -> Iterator[torch.Tensor]: """ Returns an iterator over original module buffers. """ for _, buf in self.named_buffers(): yield buf
[docs] @compatibility(is_backward_compatible=False) def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]: """ Returns an iterator over original module buffers, yielding both the name of the buffer as well as the buffer itself. """ for buffer_name in self.graph_signature.buffers: yield buffer_name, self.state_dict[buffer_name]
@property @compatibility(is_backward_compatible=False) def call_spec(self): return self._call_spec @property @compatibility(is_backward_compatible=False) def range_constraints(self): return self._range_constraints @property @compatibility(is_backward_compatible=False) def equality_constraints(self): return self._equality_constraints @property @compatibility(is_backward_compatible=False) def module_call_graph(self): return self._module_call_graph @property @compatibility(is_backward_compatible=False) def example_inputs(self): return self._example_inputs @property def dialect(self): return self._dialect def __call__(self, *args: Any, **kwargs: Any) -> Any: import torch._export.error as error from torch._export import combine_args_kwargs if self.call_spec.in_spec is not None: try: user_args = combine_args_kwargs(args, kwargs) args = fx_pytree.tree_flatten_spec( user_args, self.call_spec.in_spec, exact_structural_match=True ) # type: ignore[assignment] except Exception: _, received_spec = pytree.tree_flatten(user_args) raise TypeError( "Trying to flatten user inputs with exported input tree spec: \n" f"{self.call_spec.in_spec}\n" "but actually got inputs with tree spec of: \n" f"{received_spec}" ) ordered_params = tuple( self.state_dict[name] for name in self.graph_signature.parameters ) ordered_buffers = tuple( self.state_dict[name] for name in self.graph_signature.buffers ) self._check_input_constraints(*ordered_params, *ordered_buffers, *args) # NOTE: calling convention is first params, then buffers, then args as user supplied them. # See: torch/_functorch/aot_autograd.py#L1034 res = torch.fx.Interpreter(self.graph_module).run( *ordered_params, *ordered_buffers, *args, enable_io_processing=False ) if self.call_spec.out_spec is not None: mutation = self.graph_signature.buffers_to_mutate num_mutated = len(mutation) mutated_buffers = res[:num_mutated] # Exclude dependency token from final result. assertion_dep_token = self.graph_signature.assertion_dep_token if assertion_dep_token is not None: assertion_dep_token_index = list(assertion_dep_token.keys())[0] res = res[:assertion_dep_token_index] res = res[num_mutated:] try: res = pytree.tree_unflatten(res, self.call_spec.out_spec) except Exception: _, received_spec = pytree.tree_flatten(res) raise error.InternalError( "Trying to flatten user outputs with exported output tree spec: \n" f"{self.call_spec.out_spec}\n" "but actually got outputs with tree spec of: \n" f"{received_spec}" ) finally: ix = 0 for buffer in self.graph_signature.buffers_to_mutate.values(): self.state_dict[buffer] = mutated_buffers[ix] ix += 1 return res def __str__(self) -> str: graph_module = self.graph_module.print_readable(print_output=False).replace( "\n", "\n " ) string = ( "ExportedProgram:\n" f" {graph_module}\n" f"Graph signature: {self.graph_signature}\n" f"Range constraints: {self.range_constraints}\n" f"Equality constraints: {self.equality_constraints}\n" ) return string
[docs] def module(self) -> torch.nn.Module: """ Returns a self contained GraphModule with all the parameters/buffers inlined. """ from torch._export.exported_program import unlift_exported_program_lifted_states return unlift_exported_program_lifted_states(self)
def _transform(self, *passes: PassType) -> "ExportedProgram": from torch._export.passes.add_runtime_assertions_for_constraints_pass import ( RangeConstraint, ) pm = PassManager(list(passes)) res = pm(self.graph_module) transformed_gm = res.graph_module if res is not None else self.graph_module assert transformed_gm is not None def _get_updated_range_constraints( gm: torch.fx.GraphModule, ) -> Dict[sympy.Symbol, RangeConstraint]: def get_shape_env(gm): vals = [ node.meta["val"] for node in gm.graph.nodes if node.meta.get("val", None) is not None ] from torch._guards import detect_fake_mode fake_mode = detect_fake_mode(vals) if fake_mode is not None: return fake_mode.shape_env for v in vals: if isinstance(v, torch.SymInt): return v.node.shape_env shape_env = get_shape_env(gm) if shape_env is None: return {} range_constraints = { k: RangeConstraint(v.lower, v.upper) for k, v in shape_env.var_to_range.items() } return range_constraints def _get_updated_graph_signature( old_signature: ExportGraphSignature, new_gm: torch.fx.GraphModule, ) -> ExportGraphSignature: """ Update the graph signature's user_input/user_outputs. """ new_graph_inputs = [ node.name for node in new_gm.graph.nodes if node.op == "placeholder" ] num_inputs = ( len(old_signature.parameters) + len(old_signature.buffers) + len(old_signature.user_inputs) ) assert len(new_graph_inputs) == num_inputs, ( f"Number of input nodes changed from {len(new_graph_inputs)} " f"to {num_inputs} after transformation. This transformation " "is currently not supported." ) new_parameter_inputs = new_graph_inputs[: len(old_signature.parameters)] num_param_buffers = len(old_signature.buffers) + len( old_signature.parameters ) new_buffer_inputs = new_graph_inputs[ len(old_signature.parameters) : num_param_buffers ] new_user_inputs = new_graph_inputs[num_param_buffers:] output_node = list(new_gm.graph.nodes)[-1] assert output_node.op == "output" new_graph_outputs = [arg.name for arg in output_node.args[0]] assert len(new_graph_outputs) == len(old_signature.buffers_to_mutate) + len( old_signature.user_outputs ), ( f"Number of output nodes changed from {len(new_graph_outputs)} " f"to {len(old_signature.buffers_to_mutate) + len(old_signature.user_outputs)} " "after transformation. This transformation is currently not supported." ) new_user_outputs = new_graph_outputs[len(old_signature.buffers_to_mutate) :] new_signature = ExportGraphSignature( copy.deepcopy(old_signature.parameters), copy.deepcopy(old_signature.buffers), new_user_inputs, new_user_outputs, copy.deepcopy(old_signature.inputs_to_parameters), copy.deepcopy(old_signature.inputs_to_buffers), copy.deepcopy(old_signature.buffers_to_mutate), copy.deepcopy(old_signature.backward_signature), copy.deepcopy(old_signature.assertion_dep_token), ) return new_signature transformed_ep = ExportedProgram( transformed_gm, transformed_gm.graph, _get_updated_graph_signature(self.graph_signature, transformed_gm), copy.deepcopy(self.call_spec), self.state_dict, _get_updated_range_constraints(transformed_gm), copy.deepcopy(self.equality_constraints), copy.deepcopy(self._module_call_graph), self.example_inputs, self.dialect, ) transformed_ep.graph_module.meta.update(self.graph_module.meta) transformed_ep.graph_module.meta.update(res.graph_module.meta) return transformed_ep def _check_input_constraints(self, *args): from torch._export.passes.add_runtime_assertions_for_constraints_pass import ( _AddRuntimeAssertionsForConstraintsPass, ) # TODO(zhxchen17) Don't generate a runtime graph on the fly. _assertion_graph = torch.fx.GraphModule({}, torch.fx.Graph()) for p in self.graph.nodes: if p.op != "placeholder": continue new_p = _assertion_graph.graph.placeholder(p.name) new_p.meta = p.meta _assertion_graph.graph.output(()) _assertion_graph_res = _AddRuntimeAssertionsForConstraintsPass( self.range_constraints, self.equality_constraints, )(_assertion_graph) assert _assertion_graph_res is not None _assertion_graph = _assertion_graph_res.graph_module _assertion_graph(*args) def _validate(self): # TODO(zhxchen17) check for get_attr # TODO(zhxchen17) check for funcitonal ops for gm in self.graph_module.modules(): if not isinstance(gm, torch.fx.GraphModule): continue for node in gm.graph.nodes: if node.op == "call_function": assert node.target != torch.ops.higher_order._export_tracepoint

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources