Source code for torch.export.exported_program
import copy
import dataclasses
from enum import auto, Enum
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union
import sympy
import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch.fx._compatibility import compatibility
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager
__all__ = [
"ArgumentKind",
"ArgumentSpec",
"ExportBackwardSignature",
"ExportedProgram",
"ExportGraphSignature",
"ModuleCallEntry",
"ModuleCallSignature",
]
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
[docs]@dataclasses.dataclass
class ExportBackwardSignature:
gradients_to_parameters: Dict[str, str]
gradients_to_user_inputs: Dict[str, str]
loss_output: str
[docs]@dataclasses.dataclass
class ExportGraphSignature:
"""
:class:`ExportGraphSignature` models the input/output signature of Export Graph,
which is a fx.Graph with stronger invariants gurantees.
Export Graph is functional and does not access "states" like parameters
or buffers within the graph via ``getattr`` nodes. Instead, :func:`export`
gurantees that parameters and buffers are lifted out of the graph as inputs.
Similarly, any mutations to buffers are not included in the graph either,
instead the updated values of mutated buffers are modeled as additional outputs
of Export Graph.
The ordering of all inputs and outputs are::
Inputs = [*parameters_buffers, *flattened_user_inputs]
Outputs = [*mutated_inputs, *flattened_user_outputs]
e.g. If following module is exported::
class CustomModule(nn.Module):
def __init__(self):
super(CustomModule, self).__init__()
# Define a parameter
self.my_parameter = nn.Parameter(torch.tensor(2.0))
# Define two buffers
self.register_buffer('my_buffer1', torch.tensor(3.0))
self.register_buffer('my_buffer2', torch.tensor(4.0))
def forward(self, x1, x2):
# Use the parameter, buffers, and both inputs in the forward method
output = (x1 + self.my_parameter) * self.my_buffer1 + x2 * self.my_buffer2
# Mutate one of the buffers (e.g., increment it by 1)
self.my_buffer2.add_(1.0) # In-place addition
return output
Resulting Graph would be::
graph():
%arg0_1 := placeholder[target=arg0_1]
%arg1_1 := placeholder[target=arg1_1]
%arg2_1 := placeholder[target=arg2_1]
%arg3_1 := placeholder[target=arg3_1]
%arg4_1 := placeholder[target=arg4_1]
%add_tensor := call_function[target=torch.ops.aten.add.Tensor](args = (%arg3_1, %arg0_1), kwargs = {})
%mul_tensor := call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, %arg1_1), kwargs = {})
%mul_tensor_1 := call_function[target=torch.ops.aten.mul.Tensor](args = (%arg4_1, %arg2_1), kwargs = {})
%add_tensor_1 := call_function[target=torch.ops.aten.add.Tensor](args = (%mul_tensor, %mul_tensor_1), kwargs = {})
%add_tensor_2 := call_function[target=torch.ops.aten.add.Tensor](args = (%arg2_1, 1.0), kwargs = {})
return (add_tensor_2, add_tensor_1)
Resulting ExportGraphSignature would be::
ExportGraphSignature(
# Indicates that there is one parameter named `my_parameter`
parameters=['L__self___my_parameter'],
# Indicates that there are two buffers, `my_buffer1` and `my_buffer2`
buffers=['L__self___my_buffer1', 'L__self___my_buffer2'],
# Indicates that the nodes `arg3_1` and `arg4_1` in produced graph map to
# original user inputs, ie. x1 and x2
user_inputs=['arg3_1', 'arg4_1'],
# Indicates that the node `add_tensor_1` maps to output of original program
user_outputs=['add_tensor_1'],
# Indicates that there is one parameter (self.my_parameter) captured,
# its name is now mangled to be `L__self___my_parameter`, which is now
# represented by node `arg0_1` in the graph.
inputs_to_parameters={'arg0_1': 'L__self___my_parameter'},
# Indicates that there are two buffers (self.my_buffer1, self.my_buffer2) captured,
# their name are now mangled to be `L__self___my_my_buffer1` and `L__self___my_buffer2`.
# They are now represented by nodes `arg1_1` and `arg2_1` in the graph.
inputs_to_buffers={'arg1_1': 'L__self___my_buffer1', 'arg2_1': 'L__self___my_buffer2'},
# Indicates that one buffer named `L__self___my_buffer2` is mutated during execution,
# its new value is output from the graph represented by the node named `add_tensor_2`
buffers_to_mutate={'add_tensor_2': 'L__self___my_buffer2'},
# Backward graph not captured
backward_signature=None,
# Work in progress feature, please ignore now.
assertion_dep_token=None
)
"""
# A list of parameters uniquely identified by mangled fully qualified name
parameters: List[str]
# A list of buffers uniquely identified by mangled fully qualified name
buffers: List[str]
# Graph node names of pytree-flattened inputs of original program
user_inputs: List[str]
# Graph node names of pytree-flattened outputs of original program
user_outputs: List[str]
# A dictionary mapping graph input node names to parameters. If a graph input
# name is found in this dictionary, it is guranteed to be a lifted parameter.
inputs_to_parameters: Dict[str, str]
# A dictionary mapping graph input node names to buffers. If a graph input
# name is found in this dictionary, it is guranteed to be a lifted buffer.
inputs_to_buffers: Dict[str, str]
# A dictionary mapping graph output node names to buffers that are mutated in the
# original program. Buffers that are not mutated will not be found in this dictionary.
buffers_to_mutate: Dict[str, str]
backward_signature: Optional[ExportBackwardSignature]
# Map from assertion dependency token index to assertion dep token output
# name in output. The shape of output after aot_autograd will be like:
# (updated_inputs, user_outputs, dep_token).
assertion_dep_token: Optional[Dict[int, str]] = None
def __post_init__(self) -> None:
assertion_dep_token = self.assertion_dep_token
if assertion_dep_token is None:
return
assert len(assertion_dep_token) == 1
assertion_dep_token_index = list(assertion_dep_token.keys())[0]
assert (
len(self.user_outputs) + len(self.buffers_to_mutate)
== assertion_dep_token_index
)
[docs]@dataclasses.dataclass
class ArgumentSpec:
kind: ArgumentKind
value: Any
def __post_init__(self):
if self.kind in (ArgumentKind.Tensor, ArgumentKind.SymInt):
assert isinstance(self.value, str)
[docs]@dataclasses.dataclass
class ModuleCallSignature:
inputs: List[ArgumentSpec]
outputs: List[ArgumentSpec]
in_spec: pytree.TreeSpec
out_spec: pytree.TreeSpec
[docs]@dataclasses.dataclass
class ModuleCallEntry:
fqn: str
signature: Optional[ModuleCallSignature] = None
[docs]class ExportedProgram:
"""
Package of a program from :func:`export`. It contains
an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
tensor values of all lifted parameters and buffers, and various metadata.
You can call an ExportedProgram like the original callable traced by
:func:`export` with the same calling convention.
To perform transformations on the graph, use ``.module`` property to access
an :class:`torch.fx.GraphModule`. You can then use
`FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
to rewrite the graph. Afterwards, you can simply use :func:`export`
again to construct a correct ExportedProgram.
"""
def __init__(
self,
root: Union[torch.nn.Module, Dict[str, Any]],
graph: torch.fx.Graph,
graph_signature: ExportGraphSignature,
call_spec: Any,
state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
range_constraints: Dict[sympy.Symbol, Any],
equality_constraints: List[Tuple[Any, Any]],
module_call_graph: List[ModuleCallEntry],
example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
dialect: Optional[str] = None,
):
from torch._export.exported_program import (
_create_graph_module_for_export,
CallSpec,
)
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
InputDim,
RangeConstraint,
)
# Remove codegen related things from the graph. It should just be a flat graph.
graph._codegen = torch.fx.graph.CodeGen()
self._graph_module = _create_graph_module_for_export(root, graph)
if isinstance(root, torch.fx.GraphModule):
self._graph_module.meta.update(root.meta)
self._graph_signature: ExportGraphSignature = graph_signature
self._call_spec: CallSpec = call_spec
self._state_dict: Dict[str, Any] = state_dict
self._range_constraints: Dict[sympy.Symbol, RangeConstraint] = range_constraints
self._equality_constraints: List[
Tuple[InputDim, InputDim]
] = equality_constraints
self._module_call_graph: List[ModuleCallEntry] = module_call_graph
self._example_inputs = example_inputs
self._dialect = dialect or "ATEN"
@property
@compatibility(is_backward_compatible=False)
def graph_module(self):
return self._graph_module
@property
@compatibility(is_backward_compatible=False)
def graph(self):
return self.graph_module.graph
@property
@compatibility(is_backward_compatible=False)
def graph_signature(self):
return self._graph_signature
@property
@compatibility(is_backward_compatible=False)
def state_dict(self):
return self._state_dict
[docs] @compatibility(is_backward_compatible=False)
def parameters(self) -> Iterator[torch.nn.Parameter]:
"""
Returns an iterator over original module's parameters.
"""
for _, param in self.named_parameters():
yield param
[docs] @compatibility(is_backward_compatible=False)
def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
"""
Returns an iterator over original module parameters, yielding
both the name of the parameter as well as the parameter itself.
"""
for param_name in self.graph_signature.parameters:
yield param_name, self.state_dict[param_name]
[docs] @compatibility(is_backward_compatible=False)
def buffers(self) -> Iterator[torch.Tensor]:
"""
Returns an iterator over original module buffers.
"""
for _, buf in self.named_buffers():
yield buf
[docs] @compatibility(is_backward_compatible=False)
def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
"""
Returns an iterator over original module buffers, yielding
both the name of the buffer as well as the buffer itself.
"""
for buffer_name in self.graph_signature.buffers:
yield buffer_name, self.state_dict[buffer_name]
@property
@compatibility(is_backward_compatible=False)
def call_spec(self):
return self._call_spec
@property
@compatibility(is_backward_compatible=False)
def range_constraints(self):
return self._range_constraints
@property
@compatibility(is_backward_compatible=False)
def equality_constraints(self):
return self._equality_constraints
@property
@compatibility(is_backward_compatible=False)
def module_call_graph(self):
return self._module_call_graph
@property
@compatibility(is_backward_compatible=False)
def example_inputs(self):
return self._example_inputs
@property
def dialect(self):
return self._dialect
def __call__(self, *args: Any, **kwargs: Any) -> Any:
import torch._export.error as error
from torch._export import combine_args_kwargs
if self.call_spec.in_spec is not None:
try:
user_args = combine_args_kwargs(args, kwargs)
args = fx_pytree.tree_flatten_spec(
user_args, self.call_spec.in_spec, exact_structural_match=True
) # type: ignore[assignment]
except Exception:
_, received_spec = pytree.tree_flatten(user_args)
raise TypeError(
"Trying to flatten user inputs with exported input tree spec: \n"
f"{self.call_spec.in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}"
)
ordered_params = tuple(
self.state_dict[name] for name in self.graph_signature.parameters
)
ordered_buffers = tuple(
self.state_dict[name] for name in self.graph_signature.buffers
)
self._check_input_constraints(*ordered_params, *ordered_buffers, *args)
# NOTE: calling convention is first params, then buffers, then args as user supplied them.
# See: torch/_functorch/aot_autograd.py#L1034
res = torch.fx.Interpreter(self.graph_module).run(
*ordered_params, *ordered_buffers, *args, enable_io_processing=False
)
if self.call_spec.out_spec is not None:
mutation = self.graph_signature.buffers_to_mutate
num_mutated = len(mutation)
mutated_buffers = res[:num_mutated]
# Exclude dependency token from final result.
assertion_dep_token = self.graph_signature.assertion_dep_token
if assertion_dep_token is not None:
assertion_dep_token_index = list(assertion_dep_token.keys())[0]
res = res[:assertion_dep_token_index]
res = res[num_mutated:]
try:
res = pytree.tree_unflatten(res, self.call_spec.out_spec)
except Exception:
_, received_spec = pytree.tree_flatten(res)
raise error.InternalError(
"Trying to flatten user outputs with exported output tree spec: \n"
f"{self.call_spec.out_spec}\n"
"but actually got outputs with tree spec of: \n"
f"{received_spec}"
)
finally:
ix = 0
for buffer in self.graph_signature.buffers_to_mutate.values():
self.state_dict[buffer] = mutated_buffers[ix]
ix += 1
return res
def __str__(self) -> str:
graph_module = self.graph_module.print_readable(print_output=False).replace(
"\n", "\n "
)
string = (
"ExportedProgram:\n"
f" {graph_module}\n"
f"Graph signature: {self.graph_signature}\n"
f"Range constraints: {self.range_constraints}\n"
f"Equality constraints: {self.equality_constraints}\n"
)
return string
[docs] def module(self) -> torch.nn.Module:
"""
Returns a self contained GraphModule with all the parameters/buffers inlined.
"""
from torch._export.exported_program import unlift_exported_program_lifted_states
return unlift_exported_program_lifted_states(self)
def _transform(self, *passes: PassType) -> "ExportedProgram":
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
RangeConstraint,
)
pm = PassManager(list(passes))
res = pm(self.graph_module)
transformed_gm = res.graph_module if res is not None else self.graph_module
assert transformed_gm is not None
def _get_updated_range_constraints(
gm: torch.fx.GraphModule,
) -> Dict[sympy.Symbol, RangeConstraint]:
def get_shape_env(gm):
vals = [
node.meta["val"]
for node in gm.graph.nodes
if node.meta.get("val", None) is not None
]
from torch._guards import detect_fake_mode
fake_mode = detect_fake_mode(vals)
if fake_mode is not None:
return fake_mode.shape_env
for v in vals:
if isinstance(v, torch.SymInt):
return v.node.shape_env
shape_env = get_shape_env(gm)
if shape_env is None:
return {}
range_constraints = {
k: RangeConstraint(v.lower, v.upper)
for k, v in shape_env.var_to_range.items()
}
return range_constraints
def _get_updated_graph_signature(
old_signature: ExportGraphSignature,
new_gm: torch.fx.GraphModule,
) -> ExportGraphSignature:
"""
Update the graph signature's user_input/user_outputs.
"""
new_graph_inputs = [
node.name for node in new_gm.graph.nodes if node.op == "placeholder"
]
num_inputs = (
len(old_signature.parameters)
+ len(old_signature.buffers)
+ len(old_signature.user_inputs)
)
assert len(new_graph_inputs) == num_inputs, (
f"Number of input nodes changed from {len(new_graph_inputs)} "
f"to {num_inputs} after transformation. This transformation "
"is currently not supported."
)
new_parameter_inputs = new_graph_inputs[: len(old_signature.parameters)]
num_param_buffers = len(old_signature.buffers) + len(
old_signature.parameters
)
new_buffer_inputs = new_graph_inputs[
len(old_signature.parameters) : num_param_buffers
]
new_user_inputs = new_graph_inputs[num_param_buffers:]
output_node = list(new_gm.graph.nodes)[-1]
assert output_node.op == "output"
new_graph_outputs = [arg.name for arg in output_node.args[0]]
assert len(new_graph_outputs) == len(old_signature.buffers_to_mutate) + len(
old_signature.user_outputs
), (
f"Number of output nodes changed from {len(new_graph_outputs)} "
f"to {len(old_signature.buffers_to_mutate) + len(old_signature.user_outputs)} "
"after transformation. This transformation is currently not supported."
)
new_user_outputs = new_graph_outputs[len(old_signature.buffers_to_mutate) :]
new_signature = ExportGraphSignature(
copy.deepcopy(old_signature.parameters),
copy.deepcopy(old_signature.buffers),
new_user_inputs,
new_user_outputs,
copy.deepcopy(old_signature.inputs_to_parameters),
copy.deepcopy(old_signature.inputs_to_buffers),
copy.deepcopy(old_signature.buffers_to_mutate),
copy.deepcopy(old_signature.backward_signature),
copy.deepcopy(old_signature.assertion_dep_token),
)
return new_signature
transformed_ep = ExportedProgram(
transformed_gm,
transformed_gm.graph,
_get_updated_graph_signature(self.graph_signature, transformed_gm),
copy.deepcopy(self.call_spec),
self.state_dict,
_get_updated_range_constraints(transformed_gm),
copy.deepcopy(self.equality_constraints),
copy.deepcopy(self._module_call_graph),
self.example_inputs,
self.dialect,
)
transformed_ep.graph_module.meta.update(self.graph_module.meta)
transformed_ep.graph_module.meta.update(res.graph_module.meta)
return transformed_ep
def _check_input_constraints(self, *args):
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_AddRuntimeAssertionsForConstraintsPass,
)
# TODO(zhxchen17) Don't generate a runtime graph on the fly.
_assertion_graph = torch.fx.GraphModule({}, torch.fx.Graph())
for p in self.graph.nodes:
if p.op != "placeholder":
continue
new_p = _assertion_graph.graph.placeholder(p.name)
new_p.meta = p.meta
_assertion_graph.graph.output(())
_assertion_graph_res = _AddRuntimeAssertionsForConstraintsPass(
self.range_constraints,
self.equality_constraints,
)(_assertion_graph)
assert _assertion_graph_res is not None
_assertion_graph = _assertion_graph_res.graph_module
_assertion_graph(*args)
def _validate(self):
# TODO(zhxchen17) check for get_attr
# TODO(zhxchen17) check for funcitonal ops
for gm in self.graph_module.modules():
if not isinstance(gm, torch.fx.GraphModule):
continue
for node in gm.graph.nodes:
if node.op == "call_function":
assert node.target != torch.ops.higher_order._export_tracepoint