Source code for torch.export
import builtins
import copy
import dataclasses
import io
import pathlib
import sys
import typing
from enum import auto, Enum
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union
import sympy
import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch.fx._compatibility import compatibility
from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager
from torch.utils._pytree import (
FlattenFunc,
FromDumpableContextFn,
ToDumpableContextFn,
UnflattenFunc,
)
__all__ = [
"ArgumentKind",
"ArgumentSpec",
"Constraint",
"Dim",
"ExportBackwardSignature",
"ExportGraphSignature",
"ExportedProgram",
"ModuleCallEntry",
"ModuleCallSignature",
"constrain_as_size",
"constrain_as_value",
"dims",
"dynamic_dim",
"export",
"load",
"register_dataclass",
"save",
]
from .exported_program import (
ArgumentKind,
ArgumentSpec,
ExportBackwardSignature,
ExportedProgram,
ExportGraphSignature,
ModuleCallEntry,
ModuleCallSignature,
)
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
@dataclasses.dataclass
class _ConstraintTarget:
"""
This represents input tensor dimensions. Don't create this
class directly; instead, use :func:`dynamic_dim`.
"""
w_tensor: Any # weakref to torch.Tensor
# TODO: We don't need t_id; we can get it off of w_tensor
t_id: int
dim: int
class _ConstraintFactory(type):
"""
Metaclass that ensures a private constructor for :class:`Constraint`
"""
def __call__(cls, *args, **kwargs):
raise TypeError(
f"{cls.__module__}.{cls.__qualname__} has no public constructor. "
f"Please use torch.export.dynamic_dim() to create one"
)
def _create(
cls, w_tensor, t_id, dim, constraint_range, shared=None, debug_name=None
):
return super().__call__(
w_tensor, t_id, dim, constraint_range, shared, debug_name
)
def _create_constraint(
w_tensor, t_id, dim, constraint_range, shared=None, debug_name=None
):
return Constraint._create(w_tensor, t_id, dim, constraint_range, shared, debug_name)
[docs]@dataclasses.dataclass
class Constraint(_ConstraintTarget, metaclass=_ConstraintFactory):
"""
.. warning::
Do not construct :class:`Constraint` directly, use :func:`dynamic_dim` instead.
This represents constraints on input tensor dimensions, e.g., requiring
them to be fully polymorphic or within some range.
"""
# NOTE(avik): In the future, this could be Union[StrictMinMaxConstraint, <other kinds>]
constraint_range: StrictMinMaxConstraint
# Represent that `constraint_range` is shared with another _ConstraintTarget, which
# typically arises because of a specified equality with another dynamic dimension.
shared: Optional[_ConstraintTarget] = None
debug_name: Optional[str] = None
def _clone_with_range(self, lower=2, upper=sympy.oo):
from torch.utils._sympy.value_ranges import ValueRanges
constraint_range = StrictMinMaxConstraint(
vr=self.constraint_range.vr & ValueRanges(lower=lower, upper=upper),
warn_only=False,
)
return _create_constraint(
self.w_tensor,
self.t_id,
self.dim,
constraint_range,
self.shared,
self.debug_name,
)
def __ge__(self, lower):
return self._clone_with_range(lower=lower)
def __gt__(self, lower):
return self._clone_with_range(lower=lower + 1)
def __le__(self, upper):
return self._clone_with_range(upper=upper)
def __lt__(self, upper):
return self._clone_with_range(upper=upper - 1)
def __bool__(self):
# NOTE(avik): We do not support compound expressions like a <= x <= b.
# This is because Python implicitly desugars them into bool(a <= x) and bool(x <= b),
# and moreover, enforces that any overload of __bool__ must return True or False.
# FWIW, sympy also raises TypeError in this case.
raise TypeError(
"Cannot determine truth value of Constraint. "
"If you are trying to combine Constraint's with logical connectives, "
"you can specify them separately instead."
)
@property
def serializable_spec(self):
# We need a serialization compatible format of the constraint so that it
# can be savedin the graph module w/o breaking the module serialization.
# The saved constraints will be used directly for the post-exporting pass
# that converts constraints to runtime assertion. The saved constraints
# will not be saved in the serialized module.
# TODO: A better way is needed. Currently we use 't_id' to map the constraint,
# which is not reliable
return {
"t_id": self.t_id,
"dim": self.dim,
"min": self.constraint_range.vr.lower,
"max": self.constraint_range.vr.upper,
"shared": (
None
if self.shared is None
else {
"t_id": self.shared.t_id,
"dim": self.shared.dim,
}
),
}
def __eq__(self, other):
if not isinstance(other, Constraint):
raise TypeError(
"A dynamic dim can be specified equal only to another dynamic dim. "
f"Equality with {type(other)} is not supported."
)
constraint_range = StrictMinMaxConstraint(
vr=self.constraint_range.vr & other.constraint_range.vr,
warn_only=False,
)
if self.debug_name is None:
debug_name = other.debug_name
else:
assert other.debug_name is None or self.debug_name == other.debug_name
debug_name = self.debug_name
return _create_constraint(
self.w_tensor,
self.t_id,
self.dim,
constraint_range,
shared=_ConstraintTarget(other.w_tensor, other.t_id, other.dim),
debug_name=debug_name,
)
[docs]def constrain_as_value(symbol, min: Optional[int] = None, max: Optional[int] = None):
"""
Hint :func:`export` about the constraint of an intermediate scalar value so that subsequent
branching behaviors that check on the range of aforementioned scalar value can be
soundly traced.
.. warning::
(Note that if the intermediate scalar value will be used like a size, including
being passed as size arg to a tensor factory or view, call :func:`constrain_as_size`
instead.)
Args:
symbol: Intermediate scalar value (int-only now) to apply range constraint on.
min (Optional[int]): Minimum possible value of given symbol (inclusive)
max (Optional[int]): Maximum possible value of given symbol (inclusive)
Returns:
None
For example, following program can not be traced soundly::
def fn(x):
v = x.max().item()
if v > 1024:
return x
else:
return x * 2
``v`` is a data-dependent value, which is assumed to have a range of (-inf, inf).
:func:`export()` a hint about which branch to take would not be able to determine
if the traced branching decision is correct or not. Thus :func:`export()`
would give following error::
torch._dynamo.exc.UserError: Consider annotating your code using
torch.export.constrain_as_size() or torch.export().constrain_as_value() APIs.
It appears that you're trying to get a value out of symbolic int/float whose value
is data-dependent (and thus we do not know the true value.) The expression we were
trying to evaluate is f0 > 1024 (unhinted: f0 > 1024).
Assuming the actual range of ``v`` can be between [10, 200], you can add a call to
:func:`constrain_as_value` in the source code like this::
def fn(x):
v = x.max().item()
# Give export() a hint
torch.export.constrain_as_value(v, min=10, max=200)
if v > 1024:
return x
else:
return x * 2
With the additional hint, :func:`export` would be able to trace the program correctly by taking
the ``else`` branch, resulting in following graph::
graph():
%arg0_1 := placeholder[target=arg0_1]
# v = x.max().item()
%max_1 := call_function[target=torch.ops.aten.max.default](args = (%arg0_1,))
%_local_scalar_dense := call_function[target=torch.ops.aten._local_scalar_dense.default](args = (%max_1,))
# Asserting 10 <= v <= 200
%ge := call_function[target=operator.ge](args = (%_local_scalar_dense, 10))
%scalar_tensor := call_function[target=torch.ops.aten.scalar_tensor.default](args = (%ge,))
%_assert_async := call_function[target=torch.ops.aten._assert_async.msg](
args = (%scalar_tensor, _local_scalar_dense is outside of inline constraint [10, 200].))
%le := call_function[target=operator.le](args = (%_local_scalar_dense, 200))
%scalar_tensor_1 := call_function[target=torch.ops.aten.scalar_tensor.default](args = (%le,))
%_assert_async_1 := call_function[target=torch.ops.aten._assert_async.msg](
args = (%scalar_tensor_1, _local_scalar_dense is outside of inline constraint [10, 200].))
%sym_constrain_range := call_function[target=torch.ops.aten.sym_constrain_range.default](
args = (%_local_scalar_dense,), kwargs = {min: 10, max: 200})
# Always taking `else` branch to multiply elements `x` by 2 due to hints above
%mul := call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
return (mul,)
"""
from torch._export.constraints import constrain_as_value
return constrain_as_value(symbol, min, max)
[docs]def constrain_as_size(symbol, min: Optional[int] = None, max: Optional[int] = None):
"""
Hint :func:`export` about the constraint of an intermediate scalar value that
represents shape of a tensor so that subsequent tensor constructors can be
traced correctly because many operators need to make assumption about range
of sizes.
Args:
symbol: Intermediate scalar value (int-only now) to apply range constraint on.
min (Optional[int]): Minimum possible value of given symbol (inclusive)
max (Optional[int]): Maximum possible value of given symbol (inclusive)
Returns:
None
For example, following program can not be traced soundly wihout using
:func:`constrain_as_size` to give :func:`export` a hint about shape ranges::
def fn(x):
d = x.max().item()
return torch.ones(v)
:func:`export` would give following error::
torch._dynamo.exc.Unsupported: guard on data-dependent symbolic int/float
Assuming the actual range of ``d`` can be between [3, 10], you can add a call to
:func:`constrain_as_size` in the source code like this::
def fn(x):
d = x.max().item()
torch.export.constrain_as_size(d, min=3, max=10)
return torch.ones(d)
With the additional hint, :func:`export` would be able to trace the program correctly by taking
the ``else`` branch, resulting in following graph::
graph():
%arg0_1 := placeholder[target=arg0_1]
# d = x.max().item()
%max_1 := call_function[target=torch.ops.aten.max.default](args = (%arg0_1,))
%_local_scalar_dense := call_function[target=torch.ops.aten._local_scalar_dense.default](args = (%max_1,))
# Asserting 3 <= d <= 10
%ge := call_function[target=operator.ge](args = (%_local_scalar_dense, 3))
%scalar_tensor := call_function[target=torch.ops.aten.scalar_tensor.default](args = (%ge,))
%_assert_async := call_function[target=torch.ops.aten._assert_async.msg](
args = (%scalar_tensor, _local_scalar_dense is outside of inline constraint [3, 10].))
%le := call_function[target=operator.le](args = (%_local_scalar_dense, 10))
%scalar_tensor_1 := call_function[target=torch.ops.aten.scalar_tensor.default](args = (%le,))
%_assert_async_1 := call_function[target=torch.ops.aten._assert_async.msg](
args = (%scalar_tensor_1, _local_scalar_dense is outside of inline constraint [3, 10].))
%sym_constrain_range_for_size := call_function[target=torch.ops.aten.sym_constrain_range_for_size.default](
args = (%_local_scalar_dense,), kwargs = {min: 3, max: 10})
# Constructing new tensor with d
%full := call_function[target=torch.ops.aten.full.default](
args = ([%_local_scalar_dense], 1),
kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
......
.. warning::
if your size is intended to be dynamic, do NOT test if sizes are equal to 0 or 1,
these will SILENTLY report false and be bypassed
"""
from torch._export.constraints import constrain_as_size
return constrain_as_size(symbol, min, max)
[docs]def dynamic_dim(t: torch.Tensor, index: int):
"""
:func:`dynamic_dim` constructs a :class:`Constraint` object that describes the dynamism of
a dimension ``index`` of tensor ``t``. :class:`Constraint` objects should be passed to
``constraints`` argument of :func:`export`.
Args:
t (torch.Tensor): Example input tensor that have dynamic dimension size(s)
index (int): Index of dynamic dimension
Returns:
A :class:`Constraint` object that describes shape dynamism. It can be passed to :func:`export` so
that :func:`export` does not assume static size of specified tensor, i.e. keeping it dynamic
as a symbolic size rather than specializing according to size of example tracing input.
Specifically :func:`dynamic_dim` can be used to express following types of dynamism.
- Size of a dimension is dynamic and unbounded::
t0 = torch.rand(2, 3)
t1 = torch.rand(3, 4)
# First dimension of t0 can be dynamic size rather than always being static size 2
constraints = [dynamic_dim(t0, 0)]
ep = export(fn, (t0, t1), constraints=constraints)
- Size of a dimension is dynamic with a lower bound::
t0 = torch.rand(10, 3)
t1 = torch.rand(3, 4)
# First dimension of t0 can be dynamic size with a lower bound of 5 (inclusive)
# Second dimension of t1 can be dynamic size with a lower bound of 2 (exclusive)
constraints = [
dynamic_dim(t0, 0) >= 5,
dynamic_dim(t1, 1) > 2,
]
ep = export(fn, (t0, t1), constraints=constraints)
- Size of a dimension is dynamic with an upper bound::
t0 = torch.rand(10, 3)
t1 = torch.rand(3, 4)
# First dimension of t0 can be dynamic size with a upper bound of 16 (inclusive)
# Second dimension of t1 can be dynamic size with a upper bound of 8 (exclusive)
constraints = [
dynamic_dim(t0, 0) <= 16,
dynamic_dim(t1, 1) < 8,
]
ep = export(fn, (t0, t1), constraints=constraints)
- Size of a dimension is dynamic and it is always equal to size of another dynamic dimension::
t0 = torch.rand(10, 3)
t1 = torch.rand(3, 4)
# Sizes of second dimension of t0 and first dimension are always equal
constraints = [
dynamic_dim(t0, 1) == dynamic_dim(t1, 0),
]
ep = export(fn, (t0, t1), constraints=constraints)
- Mix and match all types above as long as they do not express conflicting requirements
"""
from torch._export import dynamic_dim
return dynamic_dim(t, index)
class _Dim(type):
"""
Metaclass for :func:`Dim` types.
"""
pass
[docs]def Dim(name: str, *, min: Optional[int] = None, max: Optional[int] = None):
"""
.. warning::
(Experimental new feature.)
:func:`Dim` constructs a type analogous to a named symbolic integer with a range.
It can be used to describe multiple possible values of a dynamic tensor dimension.
Note that different dynamic dimensions of the same tensor, or of different tensors,
can be described by the same type.
Args:
name (str): Human-readable name for debugging.
min (Optional[int]): Minimum possible value of given symbol (inclusive)
max (Optional[int]): Maximum possible value of given symbol (inclusive)
Returns:
A type that can be used in dynamic shape specifications for tensors.
"""
_min = 2 if min is None else builtins.max(min, 2)
_max = sys.maxsize if max is None else builtins.min(max, sys.maxsize)
assert _max > _min, f"Cannot create Dim with inconsistent min={min}, max={max}"
return _Dim(name, (int,), {"min": _min, "max": _max})
[docs]def dims(*names: str, min: Optional[int] = None, max: Optional[int] = None):
"""
.. warning::
(Experimental new feature.)
Util to create multiple :func:`Dim` types.
"""
return tuple(Dim(name, min=min, max=max) for name in names)
[docs]def export(
f: Callable,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
constraints: Optional[List[Constraint]] = None,
dynamic_shapes: Optional[Dict[str, Any]] = None,
) -> ExportedProgram:
"""
:func:`export` takes an arbitrary Python callable (an nn.Module, a function or
a method) and produces a traced graph representing only the Tensor
computation of the function in an Ahead-of-Time (AOT) fashion, which can
subsequently be executed with different outputs or serialized. The traced
graph (1) produces a normalized operator set consisting only of functional
`Core ATen Operator Set <https://pytorch.org/docs/stable/ir.html>`_
and user specified custom operators, (2) has eliminated all Python control
flow and data structures (except for certain
conditions), and (3) has the set of shape constraints needed to show that
this normalization and control flow elimination is sound for a future
input.
**Soundness Guarantee**
While tracing, :func:`export()` takes note of shape-related assumptions
made by the user program and the underlying PyTorch operator kernels.
The output :class:`ExportedProgram` is considered valid only when these
assumptions hold true.
There are 2 types of assumptions made during tracing
- Shapes (not values) of input tensors.
- Ranges (lower and upper bound) of values extracted from intermediate tensors via ``.item()`` or direct indexing.
All assumptions must be validated at graph capture time for :func:`export`
to succeed. Specifically:
- Assumptions on static shapes of input tensors are automatically validated without additional effort.
- Assumptions on dynamic shape of input tensors require explicit `Input Constraint`
constructed with :func:`dynamic_dim` APIs
- Assumptions on range of intermediate values require explicit `Inline Constraint`,
constructed use :func:`constrain_as_size` and :func:`constraint_as_value` APIs.
If any assumption can not be validated, a fatal error will be raised. When that happens,
the error message will include suggested code needed to construct necessary
constraints to validate the assumptions, for example :func:`export` would suggest
following code for input constraints::
def specify_constraints(x):
return [
# x:
dynamic_dim(x, 0) <= 5,
]
This example means the program requires the dim 0 of input ``x`` to be less
than or equal to 5 to be valid. You can inspect the constraints needed and
then copy this exact function into your code to generated needed
constraints to be passed into ``constraints`` argument.
Args:
f: The callable to trace.
args: Example positional inputs.
kwargs: Optional example keyword inputs.
constraints: An optional list of constraints on the dynamic arguments
that specify their possible range of shapes. By default, shapes of
input torch.Tensors are assumed to be static. If an input torch.Tensor
is expected to have dynamic shapes, please use :func:`dynamic_dim`
to define :class:`Constraint` objects that specify the dynamics and the possible
range of shapes. See :func:`dynamic_dim` docstring for examples on
how to use it.
dynamic_shapes: An experimental new feature designed to subsume ``constraints``.
Should be a dict from argument names of ``f`` to their dynamic shape specifications,
as follows. The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
Returns:
An :class:`ExportedProgram` containing the traced callable.
**Acceptable input/output types**
Acceptable types of inputs (for ``args`` and ``kwargs``) and outputs include:
- Primitive types, i.e. ``torch.Tensor``, ``int``, ``float``, ``bool`` and ``str``.
- Dataclasses, but they must be registered by calling :func:`register_dataclass` first.
- (Nested) Data structures comprising of ``dict``, ``list``, ``tuple``, ``namedtuple`` and
``OrderedDict`` containing all above types.
"""
from torch._export import export, export__RC__
if constraints is not None:
return export(f, args, kwargs, constraints)
else:
return export__RC__(f, args, kwargs, dynamic_shapes=dynamic_shapes)
[docs]def save(
ep: ExportedProgram,
f: Union[str, pathlib.Path, io.BytesIO],
*,
extra_files: Optional[Dict[str, Any]] = None,
opset_version: Optional[Dict[str, int]] = None,
) -> None:
"""
.. warning::
Under active development, saved files may not be usable in newer versions
of PyTorch.
Saves an :class:`ExportedProgram` to a file-like object. It can then be
loaded using the Python API :func:`torch.export.load <torch.export.load>`.
Args:
ep (ExportedProgram): The exported program to save.
f (Union[str, pathlib.Path, io.BytesIO): A file-like object (has to
implement write and flush) or a string containing a file name.
extra_files (Optional[Dict[str, Any]]): Map from filename to contents
which will be stored as part of f.
opset_version (Optional[Dict[str, int]]): A map of opset names
to the version of this opset
Example::
import torch
import io
class MyModule(torch.nn.Module):
def forward(self, x):
return x + 10
ep = torch.export.export(MyModule(), torch.randn(5))
# Save to file
torch.export.save(ep, 'exported_program.pt2')
# Save to io.BytesIO buffer
buffer = io.BytesIO()
torch.export.save(ep, buffer)
# Save with extra files
extra_files = {'foo.txt': b'bar'}
torch.export.save(ep, 'exported_program.pt2', extra_files=extra_files)
"""
from torch._export import save
save(ep, f, extra_files=extra_files, opset_version=opset_version)
[docs]def load(
f: Union[str, pathlib.Path, io.BytesIO],
*,
extra_files: Optional[Dict[str, Any]] = None,
expected_opset_version: Optional[Dict[str, int]] = None,
) -> ExportedProgram:
"""
.. warning::
Under active development, saved files may not be usable in newer versions
of PyTorch.
Loads an :class:`ExportedProgram` previously saved with
:func:`torch.export.save <torch.export.save>`.
Args:
ep (ExportedProgram): The exported program to save.
f (Union[str, pathlib.Path, io.BytesIO): A file-like object (has to
implement write and flush) or a string containing a file name.
extra_files (Optional[Dict[str, Any]]): The extra filenames given in
this map would be loaded and their content would be stored in the
provided map.
expected_opset_version (Optional[Dict[str, int]]): A map of opset names
to expected opset versions
Returns:
An :class:`ExportedProgram` object
Example::
import torch
import io
# Load ExportedProgram from file
ep = torch.export.load('exported_program.pt2')
# Load ExportedProgram from io.BytesIO object
with open('exported_program.pt2', 'rb') as f:
buffer = io.BytesIO(f.read())
buffer.seek(0)
ep = torch.export.load(buffer)
# Load with extra files.
extra_files = {'foo.txt': ''} # values will be replaced with data
ep = torch.export.load('exported_program.pt2', extra_files=extra_files)
print(extra_files['foo.txt'])
"""
from torch._export import load
return load(
f, extra_files=extra_files, expected_opset_version=expected_opset_version
)
[docs]def register_dataclass(typ: Any) -> None:
"""
Registers a dataclass as a valid input/output type for :func:`torch.export.export`.
Args:
typ: the dataclass type to register
Example::
@dataclass
class InputDataClass:
feature: torch.Tensor
bias: int
class OutputDataClass:
res: torch.Tensor
torch.export.register_dataclass(InputDataClass)
torch.export.register_dataclass(OutputDataClass)
def fn(o: InputDataClass) -> torch.Tensor:
res = res=o.feature + o.bias
return OutputDataClass(res=res)
ep = torch.export.export(fn, (InputDataClass(torch.ones(2, 2), 1), ))
print(ep)
"""
from torch._export.utils import register_dataclass_as_pytree_node
return register_dataclass_as_pytree_node(typ)