September 13, 2023
Accelerated CPU Inference with PyTorch Inductor using torch.compile
Story at a Glance
September 12, 2023
One Year of PyTorch Foundation
It’s been one year since we announced the formation of the PyTorch Foundation! 🎉
September 05, 2023
Automated trace collection and analysis
In this blog, we share how we enabled the collection and analysis of PyTorch Profiler traces for training workloads without any user side code instrumentation. We leveraged Dynolog - an open source daemon for CPU and GPU telemetry to collect PyTorch Profiler traces, and analyzed the collected traces using Holistic Trace Analysis - an open source library for analyzing PyTorch Profiler traces. This toolchain has allowed engineers at Meta to accelerate their performance optimiza...
August 31, 2023
PyTorch/XLA SPMD: Scale Up Model Training and Serving with Automatic Parallelization
Today, we are delighted to announce PyTorch/XLA SPMD: the integration of GSPMD into PyTorch with an easy to use API. PyTorch developers seeking superior performance and scale can train and serve the largest neural networks while maximizing utilization of AI accelerators, such as Google Cloud TPUs.
August 24, 2023
Large Scale Training of Hugging Face Transformers on TPUs With PyTorch/XLA FSDP
AI is transforming many industries through advanced capabilities such as understanding and generating language, answering questions, and delivering accurate recommendations. These capabilities are fueled by ever-increasing size and complexity of AI models, which require vast amounts of computing power to train.