Shortcuts

torch.map

dynamic_shape_map

Note

Tags: torch.map, torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import map


def dynamic_shape_map(xs, y):
    """
    functorch map() maps a function over the first tensor dimension.
    """

    def body(x, y):
        return x + y

    return map(body, xs, y)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: f32[3, 2], arg1_1: f32[2]):
                body_graph_0 = self.body_graph_0
            map_impl = torch.ops.map_impl(body_graph_0, 1, arg0_1, arg1_1);  body_graph_0 = arg0_1 = arg1_1 = None
            getitem: f32[3, 2] = map_impl[0];  map_impl = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: f32[2], arg1_1: f32[2]):
                        add: f32[2] = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                return [add]

Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1'], user_outputs=['getitem'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources