torch.cond¶
cond_branch_class_method¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
class MySubModule(torch.nn.Module):
def foo(self, x):
return x.cos()
def forward(self, x):
return self.foo(x)
class CondBranchClassMethod(torch.nn.Module):
"""
The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
- both branches must take the same args, which must also match the branch args passed to cond.
- both branches must return a single tensor
- returned tensor must have the same tensor metadata, e.g. shape and dtype
- branch function can be free function, nested function, lambda, class methods
- branch function can not have closure variables
- no inplace mutations on inputs or global variables
This example demonstrates using class method in cond().
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
def __init__(self):
super().__init__()
self.subm = MySubModule()
def bar(self, x):
return x.sin()
def forward(self, x):
return cond(x.shape[0] <= 2, self.subm.forward, self.bar, [x])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[3] = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [arg0_1]); true_graph_0 = false_graph_0 = arg0_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
cos: f32[3] = torch.ops.aten.cos.default(arg0_1); arg0_1 = None
return cos
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
sin: f32[3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
return sin
Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []
cond_branch_nested_function¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
def cond_branch_nested_function(x):
"""
The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
- both branches must take the same args, which must also match the branch args passed to cond.
- both branches must return a single tensor
- returned tensor must have the same tensor metadata, e.g. shape and dtype
- branch function can be free function, nested function, lambda, class methods
- branch function can not have closure variables
- no inplace mutations on inputs or global variables
This example demonstrates using nested function in cond().
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
def true_fn(x):
def inner_true_fn(y):
return x + y
return inner_true_fn(x)
def false_fn(x):
def inner_false_fn(y):
return x - y
return inner_false_fn(x)
return cond(x.shape[0] < 10, true_fn, false_fn, [x])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[3] = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [arg0_1]); true_graph_0 = false_graph_0 = arg0_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
add: f32[3] = torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 = None
return add
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3]):
sub: f32[3] = torch.ops.aten.sub.Tensor(arg0_1, arg0_1); arg0_1 = None
return sub
Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []
cond_branch_nonlocal_variables¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
def cond_branch_nonlocal_variables(x):
"""
The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
- both branches must take the same args, which must also match the branch args passed to cond.
- both branches must return a single tensor
- returned tensor must have the same tensor metadata, e.g. shape and dtype
- branch function can be free function, nested function, lambda, class methods
- branch function can not have closure variables
- no inplace mutations on inputs or global variables
This example demonstrates how to rewrite code to avoid capturing closure variables in branch functions.
The code below will not work because capturing closure variables is not supported.
```
my_tensor_var = x + 100
my_primitive_var = 3.14
def true_fn(y):
nonlocal my_tensor_var, my_primitive_var
return y + my_tensor_var + my_primitive_var
def false_fn(y):
nonlocal my_tensor_var, my_primitive_var
return y - my_tensor_var - my_primitive_var
return cond(x.shape[0] > 5, true_fn, false_fn, [x])
```
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
my_tensor_var = x + 100
my_primitive_var = 3.14
def true_fn(x, y, z):
return x + y + z
def false_fn(x, y, z):
return x - y - z
return cond(
x.shape[0] > 5,
true_fn,
false_fn,
[x, my_tensor_var, torch.tensor(my_primitive_var)],
)
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, _lifted_tensor_constant0: f32[], arg0_1: f32[6]):
add: f32[6] = torch.ops.aten.add.Tensor(arg0_1, 100)
lift_fresh_copy: f32[] = torch.ops.aten.lift_fresh_copy.default(_lifted_tensor_constant0); _lifted_tensor_constant0 = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[6] = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [arg0_1, add, lift_fresh_copy]); true_graph_0 = false_graph_0 = arg0_1 = add = lift_fresh_copy = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[6], arg1_1: f32[6], arg2_1: f32[]):
add: f32[6] = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
add_1: f32[6] = torch.ops.aten.add.Tensor(add, arg2_1); add = arg2_1 = None
return add_1
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[6], arg1_1: f32[6], arg2_1: f32[]):
sub: f32[6] = torch.ops.aten.sub.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
sub_1: f32[6] = torch.ops.aten.sub.Tensor(sub, arg2_1); sub = arg2_1 = None
return sub_1
Graph signature: ExportGraphSignature(parameters=[], buffers=['_lifted_tensor_constant0'], user_inputs=['arg0_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={'_lifted_tensor_constant0': '_lifted_tensor_constant0'}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []
cond_closed_over_variable¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
class CondClosedOverVariable(torch.nn.Module):
"""
torch.cond() supports branches closed over arbitrary variables.
"""
def forward(self, pred, x):
def true_fn(val):
return x * 2
def false_fn(val):
return x - 2
return cond(pred, true_fn, false_fn, [x + 1])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: b8[], arg1_1: f32[3, 2]):
add: f32[3, 2] = torch.ops.aten.add.Tensor(arg1_1, 1)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[3, 2] = torch.ops.higher_order.cond(arg0_1, true_graph_0, false_graph_0, [add, arg1_1, arg1_1]); arg0_1 = true_graph_0 = false_graph_0 = add = arg1_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]):
mul: f32[3, 2] = torch.ops.aten.mul.Tensor(arg2_1, 2); arg2_1 = None
return mul
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]):
sub: f32[3, 2] = torch.ops.aten.sub.Tensor(arg2_1, 2); arg2_1 = None
return sub
Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []
cond_operands¶
Original source code:
import torch
from torch._export import dynamic_dim
from functorch.experimental.control_flow import cond
x = torch.randn(3, 2)
y = torch.ones(2)
dynamic_constraint = dynamic_dim(x, 0)
def cond_operands(x, y):
"""
The operands passed to cond() must be:
- a list of tensors
- match arguments of `true_fn` and `false_fn`
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
def true_fn(x, y):
return x + y
def false_fn(x, y):
return x - y
return cond(x.shape[0] > 2, true_fn, false_fn, [x, y])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 2], arg1_1: f32[2]):
sym_size: Sym(s0) = torch.ops.aten.sym_size.int(arg0_1, 0)
gt: Sym(s0 > 2) = sym_size > 2; sym_size = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[s0, 2] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1, arg1_1]); gt = true_graph_0 = false_graph_0 = arg0_1 = arg1_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 2], arg1_1: f32[2]):
add: f32[s0, 2] = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return add
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 2], arg1_1: f32[2]):
sub: f32[s0, 2] = torch.ops.aten.sub.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return sub
Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {s0: RangeConstraint(min_val=2, max_val=9223372036854775806)}
Equality constraints: []
cond_predicate¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
def cond_predicate(x):
"""
The conditional statement (aka predicate) passed to cond() must be one of the following:
- torch.Tensor with a single element
- boolean expression
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
pred = x.dim() > 2 and x.shape[2] > 10
return cond(pred, lambda x: x.cos(), lambda y: y.sin(), [x])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[6, 4, 3]):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[6, 4, 3] = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [arg0_1]); true_graph_0 = false_graph_0 = arg0_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[6, 4, 3]):
cos: f32[6, 4, 3] = torch.ops.aten.cos.default(arg0_1); arg0_1 = None
return cos
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[6, 4, 3]):
sin: f32[6, 4, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
return sin
Graph signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['conditional'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Range constraints: {}
Equality constraints: []