Shortcuts

Source code for torch.distributed.tensor.parallel.fsdp

import warnings
from typing import Any, List, Optional, Tuple

import torch
import torch.distributed as dist
from torch.distributed._shard.sharded_tensor import (
    Shard,
)
from torch.distributed.tensor.parallel._data_parallel_utils import (
    _chunk_tensor,
    _flatten_tensor,
    _pre_load_state_dict,
    _unflatten_tensor,
)

__all__ = ["enable_2d_with_fsdp"]


[docs]def enable_2d_with_fsdp() -> bool: """ The API registers the extension which is needed for Tensor Parallelism (TP) to work with FullyShardedDataParallel (FSDP). We first parallelize parameters within one module or sub_modules based on a parallelize_plan and will let FSDP reshard the local tensor of distributed parameter which is essentially a DTensor. Return: A `bool` indicated whether extension registration succeeds or not. """ torch._C._log_api_usage_once("torch.distributed.tensor.parallel.enable_2d_with_fsdp") try: from torch.distributed.fsdp._fsdp_extensions import ( _set_fsdp_extensions, FSDPExtensions, ) class DTensorExtensions(FSDPExtensions): def pre_flatten_transform( self, tensor: torch.Tensor, ) -> Tuple[torch.Tensor, Optional[Any]]: return _flatten_tensor(tensor) def post_unflatten_transform( self, tensor: torch.Tensor, param_extension: Any ) -> torch.Tensor: return _unflatten_tensor(tensor, param_extension) def chunk_tensor( self, tensor: torch.Tensor, rank: int, world_size: int, num_devices_per_node: int, pg: dist.ProcessGroup, device: Optional[torch.device] = None, ) -> torch.Tensor: return _chunk_tensor(tensor, rank, world_size, num_devices_per_node, pg) def pre_load_state_dict_transform( self, tensor: torch.Tensor, ) -> Tuple[torch.Tensor, List[Shard]]: return _pre_load_state_dict(tensor) _set_fsdp_extensions(DTensorExtensions()) return True except BaseException as e: warnings.warn( "PyTorch doesn't have TensorFlattener extension point available" "2D parallelism won't work with FSDP" f"exception: {e}" ) return False

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources